

Coin-cell Automatic Assembly System

>> Introduction

The Significance of Coin Cells : In the early stages of the research and development of new materials and new processes, coin cells are often used for electrochemical performance testing to help determine the actual application value and commercial development potential of the material.

Type of Coin Cell: CR/BR : Common models are: CR2032/2430/2025/2016, etc.The first 2 digits are diameter (in mm) and the last 2 digits are thickness (in 0.1 mm).

The Structure of Coin Cell :

Coin Cell Assembly Process : Although the structure of coin cell is relatively simple compared to full cells, the preparation process is the same, which requires slurry coating at the powder end, rolling, punching and weighing of the electrode, cell assembly, and finally electrical performance testing.

>> Product Introduction

Background: Assessing the stability of electrode intercalation in material batches is a necessary procedure for both material manufacturers and battery cell factories. The consistency of personnel in assembling electrode intercalation significantly affects the judgment of material performance.

Features: Utilizing high-precision robotic arms, visual inspection systems, and automatic sealing devices to achieve automated and precise assembly of button-type batteries. The sealing pressure is stable.

Applications: Automated assembly of electrode intercalations - Systematic evaluation of the electrochemical performance of lithium (sodium) battery positive and negative electrode materials.

Product Features

Glove box integration

Anhydrous & oxygen-free atmosphere.

Laser marking

Laser marking/ink-jet for sourcing.

Particle Control

Separate dust removal; 4-axis manipulator; Non-metallic cell tray.

Material tray

Centralized feeding.

Auto Electrolyte injection

multiple electrolyte

Automatic lithium metal

chip brushing module

Improving assembly

Reducing oxidation;

consistency.

supported.

Around 1 min / cell.

High-precision assembly

Assembly concentric \pm 0.2mm.

Online voltage test

Online testing integrated.

High-throughput assembly Up to 200 cells for single assembly.

Monitoring Sentinel

High-definition camera; Monitor the equipment operation status; Online monitoring management.

Functional Modularity

Module configuration can be customized based on customer demands.

Data Processing

Automatic data collection.

Assembly process traceability

High-definition camera to record the state of the material surface.

>> Applications

Case 1: Application on Curled Electrodes

- 1 Our special suction cup can ensure that the curled electrode is sucked evenly and flatly.
- 2 Our visual positioning system can avoid the placement position deviation caused by the curling of the electrodes.
- ③ The positive electrode shell is pressed down horizontally to flatten the curled electrode that contacts the electrolyte.

Case 2: Application on the NCM Half Cells

Exp	perimental Conditions	NCM Half Cells						
Assembly environment	Glove box, H_2O and $O_2 \le 0.01$ ppm	Material	Material NCM 1		NCM 2		NCM 3	
Equipment	Automatic assembly equipment	Item	Discharge gram capacity (mAh/g)	ICE Dis cap	Discharge gram capacity (mAh/g)	ICE	Discharge gram capacity (mAh/g)	ICE
Half Cells	NCM 1, NCM 2, NCM 3 Bake at 105 ° C for 6 hours							
Electrolyte	Positive electrolyte	Range	1.299	0.5%	1.354	0.4%	1.430	0.7%
Shell, nickel foam	All are ultrasonic cleaned and dried	Mean Value	206.756	91.1%	221.750	91.4%	187.129	87.6%
Separator	One-sided ceramic separator	σ	0.37	0.00	0.39	0.00	0.39	0.00
Lithium metal chip	No brushing	COV	0.18%	0.19%	0.17%	0.11%	0.21%	0.23%

Conclusion: The range of discharge gram capacity can be controlled within 1.5 mAh/g.

Case 3: Application on the LFP Half Cells

Exp	perimental Conditions	LFP Half Cells						
Assembly environment	Glove box, H_2O and $O_2 \le 0.01ppm$	Material LFP1		LFP2		LFP3		
Equipment	Automatic assembly equipment	ltem	Discharge gram capacity (mAh/g)	105	Discharge gram	ischarge gram apacity (mAh/g)	Discharge gram capacity (mAh/g)	ICE
Half Cells	LFP 1, LFP 2, LFP 3 Bake at 105 ° C for 6 hours			ICE	capacity (mAh/g)			
Electrolyte	Positive electrolyte	Range	1.185	0.8%	1.310	0.8%	1.190	0.6%
Shell, nickel foam	All are ultrasonic cleaned and dried	Mean Value	158.391	97.7%	157.185	97.3%	157.600	97.2%
Separator	One-sided ceramic separator	σ	0.34	0.00	0.35	0.00	0.36	0.00
Lithium metal chip	No lithium brushing	COV	0.21%	0.23%	0.22%	0.17%	0.23%	0.17%

Conclusion: The range of discharge gram capacity can be controlled within 1.5 mAh/g.

Case 4: Application on the Graphite Half Cells

Exp	perimental Conditions	Graphite Half Cells						
Assembly environment	Glove box, H_2O and $O_2 \le 0.01ppm$	Material Graphite 1		Graphite 2		Graphite 3		
Equipment	Automatic assembly equipment		Charge gram capacity (mAh/g)		Charge gram capacity (mAh/g)	ICE	Charge gram capacity (mAh/g)	ICE
Half Cells	Graphite 1, Graphite 2, graphite 3 Bake at 105 ° C for 6 hours	ltem		ICE				
Electrolyte	Negative electrolyte	Range	1.4	0.7%	0.9	0.6%	1.1	0.8%
Shell, nickel foam	All are ultrasonic cleaned and dried	Mean Value	346.155	94.4%	346.455	94.3%	346.250	94.3%
Separator	One-sided ceramic separator	σ	0.35	0.00	0.31	0.00	0.38	0.00
Lithium metal chip	Brush the chip	COV	0.10%	0.22%	0.09%	0.17%	0.11%	0.28%

Conclusion: The range of charge gram capacity can be controlled within 2 mAh/g.

>> Model Table

Models	CAAS1000G/M	CAAS1100G/M	CAAS1200G/M				
Pictures							
Assembly Feature	1 Cell Each Time	40 Cells Each Time	200 Cells Each Time				
Assembly accuracy	±0.2mm						
Assembly efficiency	1 ~ 1.5 min/Cell						
Function	 Single Position Automatic Assembly System. High-precision Assembly. Rapid Assembly. Assembly Process Traceability. Integration into the standard single-station glove box. 	 Multi-station Automatic Assembly System High Precision Assembly Rapid Assembly High-throughput assembly Assembly process traceability Automatic lithium chip brushing module; 					

Note: IEST is committed to continuous product improvement. Any changes to technical specifications will be made without prior notice.

Tel: 86-0592-5367060 Mobile: 86-139-5954-7432

 \mathbf{Q}

info@iesttech.com

4th Floor, No. 2, Xinfeng 2nd Road, Huli District,Xiamen City, Fujian Province, China

(IEST **3** Major Business)

- Special Testing Instruments
- Third-party Testing Service
- ♦ R&D Solutions

IEST Linkedin